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Abstract
We study the effects of magneto-elastic coupling on frustrated spin states of the
antiferromagnetic Heisenberg model on a regular triangle and tetrahedron made
of spin 1/2 or 1. Displacement of spin is considered as a quantum-mechanical
variable. Distortion of clusters occurs through quantum fluctuation of normal
modes caused by magneto-elastic coupling. The nonmagnetic phase transitions
of vanadium and chromium spinels are discussed.

1. Introduction

Reduction of degeneracy of the ground state for frustrated spins on the pyrochlore lattice by
lattice distortion has been discussed by several authors for classical vector spin [1–4] and
for quantum spin [5, 6]. Characteristics of the vibronic state have also been studied [7]. In
these works, the displacement of spin was considered to be classical. Recently, the quantum-
mechanical phonon has been considered [8]. Then the distortion occurs through the quantum
fluctuation of normal modes [9, 10].

In this paper, we study magneto-elastic coupling in frustrated spin states of the
antiferromagnetic (AF) Heisenberg Hamiltonian on a regular triangle and tetrahedron made
of spin 1/2 or 1, giving attention to the quantum fluctuation of normal modes. We discuss the
structural phase transition of spinels [11, 12] on the basis of the tetragonal distortion caused by
the quantum fluctuation.

2. Magneto-elastic coupling

The Heisenberg Hamiltonian for spins on a regular triangle and tetrahedron,

H0 = −2J0

∑
�<�′s� · s�′ , (1)
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Figure 1. Displacement by doublet E′(D3h) and E(Td) modes.

is invariant under the operations of D3h and Td groups, respectively. When the exchange
parameter depends on the distance between spins, the spin states are perturbed by distortion.

Normal modes of the triangle are classified into the singlet A′
1 (qA, its normal coordinate)

and doublet E′(q1, q2) modes. Normal modes of the tetrahedron are classified into A1 (QA),
T2 (Q1, Q2, Q3) and E (Qu, Qv) modes. The singlet A′

1 and A1 modes are the breathing ones.
The doublet E′ and E modes are illustrated in figure 1.

The normal modes couple with the corresponding bases of the same representation made
from linear combinations of s� · s�′ . The A′

1 and E′ representation for the D3h group are given
by

A′
1: fA =

∑
�<�′s� · s�′/

√
3, (2)

E′: f1 = (s1 · s2 − s3 · s1)/
√

2, f2 = (s1 · s2 − 2s2 · s3 + s3 · s1)/
√

6. (3)

The A1, T2 and E representations for the Td group are given by

A1: FA =
∑

�<�′s� · s�′/
√

6, (4)

T2:
{

F1 = (s1 · s4 − s2 · s3)/
√

2, F2 = (s1 · s3 − s2 · s4)/
√

2,

F3 = (s1 · s2 − s3 · s4)/
√

2,
(5)

E:
{

Fu = [(s1 + s2) · (s3 + s4) − 2(s1 · s2 + s3 · s4)]/2
√

3,

Fv = (s1 − s2) · (s3 − s4)/2.
(6)

The perturbation Hamiltonian for the triangle is

H′ = 1

2m
(pA

2 + p1
2 + p2

2) + mωA′ 2

2
qA

2 + mωE′ 2

2
(q1

2 + q2
2)

− 2[J ′
A′qA fA + J ′

E′(q1 f1 + q2 f2)], (7)

where pα is the momentum conjugate to qα. The coupling constants J ′
α are J ′

A′ = √
3J ′ and

J ′
E′ = √

3/2J ′, where J ′ = ∂ J/∂a and a = |R0
� − R0

�′ |. For the tetrahedron,

H′ = 1

2m
(PA

2 + P1
2 + P2

2 + P3
3 + Pu

2 + Pv
2)

+ m

2

[
ωA

2 QA
2 + ωT

2(Q1
2 + Q2

2 + Q3
2) + ωE

2(Qu
2 + Qv

2)
]

− 2
[
J ′

A QA FA + J ′
T(Q1 F1 + Q2 F2 + Q3 F3) + J ′

E(Qu Fu + Qv Fv)
]
, (8)

where the J ′
α are J ′

A = 2J ′, J ′
T = √

2J ′ and J ′
E = J ′.

3. Spin states

The unperturbed Hamiltonian is rewritten as

H0 = −J0

[
S(S + 1) −

∑
�
s(s + 1)

]
, (9)

2
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Figure 2. Spin correlations in the E′(D3h) and E(Td) spin states.

Figure 3. Spin correlations in the AF ground spin states for spin-1 clusters.

where S is spin quantum number of S(= ∑
� s�) and s = 1/2 or 1. The eigen-energy is

specified by S and the order of degeneracy is known through the additive process of s�.

Spin 1/2. For the triangle, the AF ground state is doubly degenerate and is given as

H0|E′i, Sz〉 = (3/2)J0|E′i, Sz〉, i = 1, 2 for S = 1/2. (10)

The state vectors give the E′ representation for D3h group. We put aside the Kramers
degeneracy. In the subspace of |E′i, Sz〉,
fA = −(

√
3/4)σ1, f1 = (

√
6/4)σx , f2 = (

√
6/4)σz, (11)

where σ1 is the unit matrix, and σx and σz the Pauli matrices.
For the tetrahedron, the AF ground state is doubly degenerate and is given as

H0|Eη〉 = 3J0|Eη〉, η = u, v, for S = 0. (12)

The state vectors give the E representation for Td group. In the subspace of |Eη〉,
FA = −(

√
6/4)σ1, Fu = −(

√
3/2)σz, Fv = −(

√
3/2)σx , (13)

and Fτ = 0 for τ = 1, 2, 3. Note that the perturbation of T2 symmetry is irrelevant because Fτ

is vanishing and the product representation T2 × E does not contain the E representation. The
spin correlations in the ground states are shown in figure 2.

Spin 1. For the triangle, the AF ground state energy is 6J0 with S = 0 without degeneracy. The
eigenvector |A′

2〉 gives the A′
2 representation for the D3h group.

For the tetrahedron, the ground state is triply degenerate and is given as

H0|A1〉 = 8J0|A1〉, H0|Eη〉 = 8J0|Eη〉, η = u, v, for S = 0. (14)

The eigenvectors give the A1 and E representations for the Td group. In the three-dimensional
subspace of {|A1〉, |Eu〉, |Ev〉},

FA = −2
√

2√
3

( 1 0 0
0 0 0
0 0 0

)
, Fu = −1√

3

( 0 2
√

5 0
2
√

5 1 0
0 0 −1

)
,

Fv = 1√
3

( 0 0 −2
√

5
0 0 1

−2
√

5 1 0

)
. (15)

The spin correlations in the ground states are shown in figure 3.
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4. Distortion and fluctuation

By making use of the creation and annihilation operators, b†
α and bα, for α mode, we rewrite

H′ and equations (7) and (8) as

H′ =
∑

α
h̄ωα(b†

αbα + 1/2) − √
h̄/2mωα J ′

α(bα + b†
α) fα, (16)

where fα denotes fα for the triangle and Fα for the tetrahedron. Introducing modified operators

b̃α = bα −
√

2/mh̄ω3
α J ′

α fα, b̃†
α = b†

α −
√

2/mh̄ω3
α J ′

α fα, (17)

we have

H′ =
∑

α
h̄ωα(b̃†

αb̃α + 1/2) − (2/mωα
2)J ′

α

2 f 2
α . (18)

The commutators [b̃α, b̃†
α] = 1 and [b̃α, b̃α] = [b̃†

α, b̃†
α] = 0 are boson-like although the b̃α

for E′ (D3h) and E (Td) modes with different α are not commutable because the commutators
of the fα between different α for E′ and E representations depend on the chirality of spins.
The behaviour of the chiral parameter in the excited state has been studied by Yamasaki et al
[7]. The complication of excitation due to the uncommutability arises in two or more modified
phonon states with different modes. The first excited state is a single modified phonon state.
So the ground state with respect to the modified phonon is simply obtained by

b̃α| · · ·〉0 = 0. (19)

Then, in the subspace of | · · ·〉0,

qα (or Qα) = √
h̄/2mωα(b†

α + bα) = (2J ′
α/mωα

2) fα (20)

and

H′ =
∑

α
− (2/mωα

2)J
′2
α f 2

α + h̄ωα/2. (21)

The lowest energy is obtained by the greatest eigenvalue of f 2
α .

Spin 1/2. In the subspace of E′ (D3h) or E (Td) spin states, the f 2
α or F2

α are proportional to the
unit matrix as seen from equations (11) and (13). Then, the changes in energy are

δE′ = −3J
′2
A′/8mω2

A′ − 3J
′2
E′ /2mω2

E′ (triangle),

δE′ = −3J
′2
A /4mω2

A − 3J
′2
E /mω2

E (tetrahedron).
(22)

The degeneracy is not lifted and the contribution of the E′ and E modes are twice that by the
static model [5, 9].

In the subspace of the modified ground spin states,

qA = −√
3/2(J ′

A/mωA
2)σ1, (q1, q2) = √

3/2J ′
E′/mω2

E′(σx , σz), (23)

for the triangle and

QA = −√
3/2(J ′

A/mωA
2)σ1, (Qu, Qv) = −√

3J ′
E/mωE

2(σz, σx ) (24)

for the tetrahedron by equations (17) and (19).
The apparent distortions are given by expectation values:

〈E′i |q1|E′i〉0 = 0, 〈E′i |qA|E′i〉0 = −√
3/2J ′

A′/mωA′ 2, (25)

〈E′1|q2|E′1〉0 = −〈E′2|q2|E′2〉0 = √
3/2J ′

E′/mω2
E′, (26)

and

〈Eu|Qu|Eu〉0 = −〈Ev|Qu|Ev〉0 = −√
3J ′

E/mωE
2, (27)

〈Eη|Qv|Eη〉0 = 0, 〈Eη|QA|Eη〉0 = −√
3/2J ′

A/mωA
2. (28)
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The expectation values of q1 and Qv are vanishing, i.e., the distortions due to these modes are
smeared out by quantum fluctuation; then distortions due to q2 and Qu occur. The fluctuations
are estimated as

〈E′i |q1
2|E′i〉0 = (3/2)J ′2

E′ /m2ω4
E′ + h̄/2mωE′ ,

〈Eη|Qv
2|Eη〉0 = 3J ′2

E /m2ωE
4 + h̄/2mωE,

(29)

of which the first terms on the right-hand side are equal to 〈E′η|q2|E′η〉0
2 and 〈Eη|Qu|Eη〉0

2,
respectively. Although the distortion of q1 and Qv modes are smeared out, they have the same
elastic energy as the q2 and Qu modes, respectively.

Spin 1. There is no degeneracy for the ground spin state of the triangle of spin 1. Moreover the
symmetry of the ground spin state is A′

2, which corresponds to the uniform rotation mode, so
there is no coupling.

The lowest energy for the tetrahedron is calculated from equation (21) using the greatest
eigenvalues of

FA
2 = 8

3

( 1 0 0
0 0 0
0 0 0

)
, Fu

2 + Fv
2 = 1

3

( 40 4
√

5 0
4
√

5 22 0
0 0 22

)
. (30)

In the triply degenerate ground spin states, {|Ev〉0} is separated from {|A1〉0, |Eu〉0}. The
eigenvalues of H′ in {|A1〉0, |Eu〉0} are higher or lower than the value for the unperturbed state
or that for |Ev〉0. Then, in contrast to the spin-1/2 cases, the degeneracy is lifted.

The expectation values of Qα for each spin state are calculated from Fα by equation (20)
as follows:

〈A1|QA|A1〉0 = −(4
√

2/3mωA1
2)J ′

A1
, 〈Eη|QA|Eη〉0 = 0 (31)

〈A1|Qu|A1〉0 = 0,

〈Eu|Qu|Eu〉0 = −〈Ev|Qu|Ev〉0 = −(2/
√

3mωE
2)J ′

E,
(32)

and 〈Qv〉 vanishes for any states.
The expectation values of Qα

2 are, apart from the zero-point motion,

〈A1|QA
2|A1〉0 = 〈A1|QA|A1〉0

2,

〈Eη|QA
2|Eη〉0 = 0, 〈A1|Qη|A1〉0 = 0,

〈Ev|Qu
2|Ev〉0 = 〈Eu|Qv

2|Eu〉0 = 〈Eu|Qu|Eu〉0
2,

(33)

which are not fluctuating, and

〈Eη|Qη
2|Eη〉0 = (28/m2ωE

4)J ′2
E . (34)

The Qη mode is strongly fluctuating by mixing |A1〉0 with |Eu〉0.

5. Conclusion and discussion

For spin 1/2, the triangle and tetrahedron give very similar results to each other. Magneto-
elastic coupling mixes the doublet spin state with the doublet phonon of the same symmetry.
Then the degeneracy of the ground state is not lifted in spite of distortion. By the spin-1/2
tetramer model for spin-1 vanadium spinel [5], the tetragonal distortion at the non-magnetic
phase transition is interpreted as a result of hidden ordering of |Eu〉0 and |Ev〉0 because the sign
of distortion depends on the spin states.

The ground spin state of spin 1 for the tetrahedron is triply degenerate and classified into
A1 and E states. Magneto-elastic coupling hybridizes |A1〉0 with |Ev〉0 and lifts the degeneracy
and also brings about significant fluctuation of Qη. Then the hidden ordering in the case of spin
1/2 may not appear as observed in spin-3/2 chromium spinel [12].
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